Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 295, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509455

RESUMO

BACKGROUND: Mammalian testis is a highly complex and heterogeneous tissue. This complexity, which mostly derives from spermatogenic cells, is reflected at the transcriptional level, with the largest number of tissue-specific genes and long noncoding RNAs (lncRNAs) compared to other tissues, and one of the highest rates of alternative splicing. Although it is known that adequate alternative-splicing patterns and stage-specific isoforms are critical for successful spermatogenesis, so far only a very limited number of reports have addressed a detailed study of alternative splicing and isoforms along the different spermatogenic stages. RESULTS: In the present work, using highly purified stage-specific testicular cell populations, we detected 33,002 transcripts expressed throughout mouse spermatogenesis not annotated so far. These include both splice variants of already annotated genes, and of hitherto unannotated genes. Using conservative criteria, we uncovered 13,471 spermatogenic lncRNAs, which reflects the still incomplete annotation of lncRNAs. A distinctive feature of lncRNAs was their lower number of splice variants compared to protein-coding ones, adding to the conclusion that lncRNAs are, in general, less complex than mRNAs. Besides, we identified 2,794 unannotated transcripts with high coding potential (including some arising from yet unannotated genes), many of which encode unnoticed putative testis-specific proteins. Some of the most interesting coding splice variants were chosen, and validated through RT-PCR. Remarkably, the largest number of stage-specific unannotated transcripts are expressed during early meiotic prophase stages, whose study has been scarcely addressed in former transcriptomic analyses. CONCLUSIONS: We detected a high number of yet unannotated genes and alternatively spliced transcripts along mouse spermatogenesis, hence showing that the transcriptomic diversity of the testis is considerably higher than previously reported. This is especially prominent for specific, underrepresented stages such as those of early meiotic prophase, and its unveiling may constitute a step towards the understanding of their key events.


Assuntos
RNA Longo não Codificante , Masculino , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Meiose , Espermatogênese/genética , Testículo/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Mamíferos/genética
2.
Front Pharmacol ; 14: 1136321, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089958

RESUMO

Introduction: Trypanosoma cruzi, Trypanosoma brucei, and Leishmania spp., commonly referred to as TriTryps, are a group of protozoan parasites that cause important human diseases affecting millions of people belonging to the most vulnerable populations worldwide. Current treatments have limited efficiencies and can cause serious side effects, so there is an urgent need to develop new control strategies. Presently, the identification and prioritization of appropriate targets can be aided by integrative genomic and computational approaches. Methods: In this work, we conducted a genome-wide multidimensional data integration strategy to prioritize drug targets. We included genomic, transcriptomic, metabolic, and protein structural data sources, to delineate candidate proteins with relevant features for target selection in drug development. Results and Discussion: Our final ranked list includes proteins shared by TriTryps and covers a range of biological functions including essential proteins for parasite survival or growth, oxidative stress-related enzymes, virulence factors, and proteins that are exclusive to these parasites. Our strategy found previously described candidates, which validates our approach as well as new proteins that can be attractive targets to consider during the initial steps of drug discovery.

3.
BMC Biol ; 20(1): 275, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482348

RESUMO

BACKGROUND: Escalation in industrialization and anthropogenic activity have resulted in an increase of pollutants released into the environment. Of these pollutants, heavy metals such as copper are particularly concerning due to their bio-accumulative nature. Due to its highly heterogeneous distribution and its dual nature as an essential micronutrient and toxic element, the genetic basis of copper tolerance is likely shaped by a complex interplay of genetic and environmental factors. RESULTS: In this study, we utilized the natural variation present in multiple populations of Drosophila melanogaster collected across Europe to screen for variation in copper tolerance. We found that latitude and the degree of urbanization at the collection sites, rather than any other combination of environmental factors, were linked to copper tolerance. While previously identified copper-related genes were not differentially expressed in tolerant vs. sensitive strains, genes involved in metabolism, reproduction, and protease induction contributed to the differential stress response. Additionally, the greatest transcriptomic and physiological responses to copper toxicity were seen in the midgut, where we found that preservation of gut acidity is strongly linked to greater tolerance. Finally, we identified transposable element insertions likely to play a role in copper stress response. CONCLUSIONS: Overall, by combining genome-wide approaches with environmental association analysis, and functional analysis of candidate genes, our study provides a unique perspective on the genetic and environmental factors that shape copper tolerance in natural D. melanogaster populations and identifies new genes, transposable elements, and physiological traits involved in this complex phenotype.


Assuntos
Cobre , Drosophila , Animais , Cobre/toxicidade , Drosophila melanogaster/genética , Genômica , Europa (Continente)
4.
Nat Commun ; 13(1): 1948, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35413957

RESUMO

High quality reference genomes are crucial to understanding genome function, structure and evolution. The availability of reference genomes has allowed us to start inferring the role of genetic variation in biology, disease, and biodiversity conservation. However, analyses across organisms demonstrate that a single reference genome is not enough to capture the global genetic diversity present in populations. In this work, we generate 32 high-quality reference genomes for the well-known model species D. melanogaster and focus on the identification and analysis of transposable element variation as they are the most common type of structural variant. We show that integrating the genetic variation across natural populations from five climatic regions increases the number of detected insertions by 58%. Moreover, 26% to 57% of the insertions identified using long-reads were missed by short-reads methods. We also identify hundreds of transposable elements associated with gene expression variation and new TE variants likely to contribute to adaptive evolution in this species. Our results highlight the importance of incorporating the genetic variation present in natural populations to genomic studies, which is essential if we are to understand how genomes function and evolve.


Assuntos
Elementos de DNA Transponíveis , Drosophila , Animais , Elementos de DNA Transponíveis/genética , Drosophila/genética , Drosophila melanogaster/genética , Evolução Molecular , Expressão Gênica , Análise de Sequência de DNA
5.
Biochimie ; 180: 229-242, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33197551

RESUMO

Antimicrobial peptides (AMPs) play an essential role in plant defense against invading pathogens. Due to their biological properties, these molecules have been considered useful for drug development, as novel agents in disease therapeutics, applicable to both agriculture and medicine. New technologies of massive sequencing open opportunities to discover novel AMP encoding genes in wild plant species. This work aimed to identify cysteine-rich AMPs from Peltophorum dubium, a legume tree from South America. We performed whole-transcriptome sequencing of P. dubium seedlings followed by de novo transcriptome assembly, uncovering 78 AMP transcripts classified into five families: hevein-like, lipid-transfer proteins (LTPs), alpha hairpinins, defensins, and snakin/GASA (Giberellic Acid Stimulated in Arabidopsis) peptides. No transcripts with similarity to cyclotide or thionin genes were identified. Genomic DNA analysis by PCR confirmed the presence of 18 genes encoding six putative defensins and 12 snakin/GASA peptides and allowed the characterization of their exon-intron structure. The present work demonstrates that AMP prediction from a wild species is possible using RNA sequencing and de novo transcriptome assembly, regarding a starting point for studies focused on AMP gene evolution and expression. Moreover, this study allowed the detection of strong AMP candidates for drug development and novel biotechnological products.


Assuntos
Fabaceae/química , Genes de Plantas/genética , Genoma de Planta/genética , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Plântula/genética , Plântula/metabolismo , Motivos de Aminoácidos/genética , Modelos Moleculares , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/classificação , Alinhamento de Sequência , Transcriptoma
6.
Sci Rep ; 10(1): 9496, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32528029

RESUMO

Differences in social status are often mediated by agonistic encounters between competitors. Robust literature has examined social status-dependent brain gene expression profiles across vertebrates, yet social status and reproductive state are often confounded. It has therefore been challenging to identify the neuromolecular mechanisms underlying social status independent of reproductive state. Weakly electric fish, Gymnotus omarorum, display territorial aggression and social dominance independent of reproductive state. We use wild-derived G. omarorum males to conduct a transcriptomic analysis of non-breeding social dominance relationships. After allowing paired rivals to establish a dominance hierarchy, we profiled the transcriptomes of brain sections containing the preoptic area (region involved in regulating aggressive behaviour) in dominant and subordinate individuals. We identified 16 differentially expressed genes (FDR < 0.05) and numerous genes that co-varied with behavioural traits. We also compared our results with previous reports of differential gene expression in other teleost species. Overall, our study establishes G. omarorum as a powerful model system for understanding the neuromolecular bases of social status independent of reproductive state.


Assuntos
Comportamento Agonístico , Encéfalo/metabolismo , Peixe Elétrico , Perfilação da Expressão Gênica , Animais , Anotação de Sequência Molecular , Predomínio Social
7.
Cell Microbiol ; 22(11): e13243, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32597009

RESUMO

Trypanosomatids regulate gene expression mainly at the post-transcriptional level through processing, exporting and stabilising mRNA and control of translation. In most eukaryotes, protein synthesis is regulated by phosphorylation of eukaryotic initiation factor 2 (eIF2) at serine 51. Phosphorylation halts overall translation by decreasing availability of initiator tRNAmet to form translating ribosomes. In trypanosomatids, the N-terminus of eIF2α is extended with threonine 169 the homologous phosphorylated residue. Here, we evaluated whether eIF2α phosphorylation varies during the Trypanosoma cruzi life cycle, the etiological agent of Chagas' disease. Total levels of eIF2α are diminished in infective and non-replicative trypomastigotes compared with proliferative forms from the intestine of the insect vector or amastigotes from mammalian cells, consistent with decreased protein synthesis reported in infective forms. eIF2α phosphorylation increases in proliferative intracellular forms prior to differentiation into trypomastigotes. Parasites overexpressing eIF2αT169A or with an endogenous CRISPR/Cas9-generated eIF2αT169A mutation were created and analysis revealed alterations to the proteome, largely unrelated to the presence of µORF in epimastigotes. eIF2αT169A mutant parasites produced fewer trypomastigotes with lower infectivity than wild type, with increased levels of sialylated mucins and oligomannose glycoproteins, and decreased galactofuranose epitopes and the surface protease GP63 on the cell surface. We conclude that eIF2α expression and phosphorylation levels affect proteins relevant for intracellular progression of T. cruzi.


Assuntos
Doença de Chagas/parasitologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Linhagem Celular Tumoral , Fator de Iniciação 2 em Eucariotos/genética , Regulação da Expressão Gênica , Humanos , Estágios do Ciclo de Vida , Mutação , Parasitemia , Fosforilação , Biossíntese de Proteínas , Proteoma/metabolismo , Proteínas de Protozoários/análise , Proteínas de Protozoários/biossíntese , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/patogenicidade , Virulência
8.
Front Genet ; 11: 166, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180802

RESUMO

It is generally accepted that the presence of ORFs in the 5' untranslated region of eukaryotic transcripts modulates the production of proteins by controlling the translation initiation rate of the main CDS. In trypanosomatid parasites, which almost exclusively depend on post-transcriptional mechanisms to regulate gene expression, translation has been identified as a key step. However, the mechanisms of control of translation are not fully understood. In the present work, we have annotated the 5'UTRs of the Trypanosoma cruzi genome both in epimastigotes and metacyclic trypomastigotes and, using a stringent classification approach, we identified putative regulatory uORFs in about 9% of the analyzed 5'UTRs. The translation efficiency (TE) and translational levels of transcripts containing putative repressive uORFs were found to be significantly reduced. These findings are supported by the fact that proteomic methods only identify a low number of proteins coded by transcripts containing repressive uORF. We additionally show that AUG is the main translation initiator codon of repressive uORFs in T. cruzi. Interestingly, the decrease in TE is more pronounced when the uORFs overlaps the main CDS. In conclusion, we show that the presence of the uORF and features such as initiation codon and/or location of the uORFs may be acting to fine tune translation levels in these parasites.

9.
Mol Biochem Parasitol ; 224: 57-60, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30055185

RESUMO

The use of Triclabendazole for controlling fasciolosis is compromised by increased drug resistance affecting livestock and humans. Although the mode of action of TCBZ is still unknown, putative candidates and markers of resistance have been advanced. A single nucleotide polymorphism (T687 G) in F. hepatica PGP was proposed as marker of resistance in a small scale study of European susceptible and resistant flukes, but the association was not found in Australian samples. The T687 G SNP was absent in more than 40 samples from 2 TCBZ-resistant and 3 susceptible isolates across Latin America here analyzed. While the American samples showed more variable SNPs than the previous ones, none of the SNPs detected showed a marked association with resistance. Analyzing the 42 kb of the FhPGP gene based on RNAseq data highlights that the variation has been underestimated, suggesting that more detailed efforts are needed in order to identify markers of resistance.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Antiplatelmínticos/farmacologia , Resistência a Medicamentos , Fasciola hepatica/efeitos dos fármacos , Fasciola hepatica/enzimologia , Polimorfismo de Nucleotídeo Único , Triclabendazol/farmacologia , Animais , Fasciola hepatica/isolamento & purificação , Humanos , América Latina , Análise de Sequência de RNA
10.
Parasit Vectors ; 11(1): 56, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29368659

RESUMO

BACKGROUND: Fasciola hepatica is the main agent of fasciolosis, a zoonotic disease affecting livestock worldwide, and an emerging food-borne disease in humans. Even when effective treatments are available, drugs are costly and can result in tolerance, liver damage and normally they do not prevent reinfection. Drug-resistant strains in livestock have been reported in various countries and, more worryingly, drug resistance in human cases has emerged in South America. The present study aims to characterize the transcriptome of two South American resistant isolates, the Cajamarca isolate from Peru, resistant to both triclabendazole and albendazole (TCBZR/ABZR) and the Rubino isolate from Uruguay, resistant to ABZ (TCBZS/ABZR), and compare them to a sensitive strain (Cenapa, Mexico, TCBZS/ABZS) to reveal putative molecular mechanisms leading to drug resistance. RESULTS: We observed a major reduction in transcription in the Cajamarca TCBZR/ABZR isolate in comparison to the other isolates. While most of the differentially expressed genes are still unannotated, several trends could be detected. Specific reduction in the expression levels of cytoskeleton proteins was consistent with a role of tubulins as putative targets of triclabendazole (TCBZ). A marked reduction of adenylate cyclase might be underlying pleiotropic effects on diverse metabolic pathways of the parasite. Upregulation of GST mu isoforms suggests this detoxifying mechanism as one of the strategies associated with resistance. CONCLUSIONS: Our results stress the value of transcriptomic approaches as a means of providing novel insights to advance the understanding of drug mode of action and drug resistance. The results provide evidence for pleiotropic variations in drug-resistant isolates consistent with early observations of TCBZ and ABZ effects and recent proteomic findings.


Assuntos
Anti-Helmínticos/farmacologia , Resistência a Múltiplos Medicamentos/genética , Fasciola hepatica/efeitos dos fármacos , Fasciola hepatica/genética , Expressão Gênica , Albendazol/farmacologia , Animais , Fasciola hepatica/isolamento & purificação , Fasciolíase/epidemiologia , Fasciolíase/parasitologia , Perfilação da Expressão Gênica , Humanos , México/epidemiologia , Peru/epidemiologia , Proteômica , América do Sul/epidemiologia , Triclabendazol/farmacologia , Uruguai/epidemiologia
11.
Front Genet ; 9: 671, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619487

RESUMO

Most signals involved in post-transcriptional regulatory networks are located in the untranslated regions (UTRs) of the mRNAs. Therefore, to deepen our understanding of gene expression regulation, delimitation of these regions with high accuracy is needed. The trypanosomatid lineage includes a variety of parasitic protozoans causing a significant worldwide burden on human health. Given their peculiar mechanisms of gene expression, these organisms depend on post-transcriptional regulation as the main level of gene expression control. In this context, the definition of the UTR regions becomes of key importance. We have developed UTR-mini-exon (UTRme), a graphical user interface (GUI) stand-alone application to identify and annotate 5' and 3' UTR regions in a highly accurate way. UTRme implements a multiple scoring system tailored to address the issue of false positive UTR assignment that frequently arise because of the characteristics of the intergenic regions. Even though it was developed for trypanosomatids, the tool can be used to predict 3' sites in any eukaryote and 5' UTRs in any organism where trans-splicing occurs (such as the model organism C. elegans). UTRme offers a way for non-bioinformaticians to precisely determine UTRs from transcriptomic data. The tool is freely available via the conda and github repositories.

12.
Genome Biol Evol ; 7(8): 2136-53, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26133390

RESUMO

Taeniid cestodes (including the human parasites Echinococcus spp. and Taenia solium) have very few mobile genetic elements (MGEs) in their genome, despite lacking a canonical PIWI pathway. The MGEs of these parasites are virtually unexplored, and nothing is known about their expression and silencing. In this work, we report the discovery of a novel family of small nonautonomous long terminal repeat retrotransposons (also known as terminal-repeat retrotransposons in miniature, TRIMs) which we have named ta-TRIM (taeniid TRIM). ta-TRIMs are only the second family of TRIM elements discovered in animals, and are likely the result of convergent reductive evolution in different taxonomic groups. These elements originated at the base of the taeniid tree and have expanded during taeniid diversification, including after the divergence of closely related species such as Echinococcus multilocularis and Echinococcus granulosus. They are massively expressed in larval stages, from a small proportion of full-length copies and from isolated terminal repeats that show transcriptional read-through into downstream regions, generating novel noncoding RNAs and transcriptional fusions to coding genes. In E. multilocularis, ta-TRIMs are specifically expressed in the germinative cells (the somatic stem cells) during asexual reproduction of metacestode larvae. This would provide a developmental mechanism for insertion of ta-TRIMs into cells that will eventually generate the adult germ line. Future studies of active and inactive ta-TRIM elements could give the first clues on MGE silencing mechanisms in cestodes.


Assuntos
Echinococcus multilocularis/genética , Retroelementos , Células-Tronco/metabolismo , Animais , Cestoides/genética , Echinococcus multilocularis/crescimento & desenvolvimento , Evolução Molecular , Expressão Gênica , Larva/metabolismo , Sequências Repetidas Terminais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA